Source code for pipecat.services.cerebras.llm

#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#

from typing import List

from loguru import logger
from openai import AsyncStream
from openai.types.chat import ChatCompletionChunk, ChatCompletionMessageParam

from pipecat.processors.aggregators.openai_llm_context import OpenAILLMContext
from pipecat.services.openai.llm import OpenAILLMService


[docs] class CerebrasLLMService(OpenAILLMService): """A service for interacting with Cerebras's API using the OpenAI-compatible interface. This service extends OpenAILLMService to connect to Cerebras's API endpoint while maintaining full compatibility with OpenAI's interface and functionality. Args: api_key (str): The API key for accessing Cerebras's API base_url (str, optional): The base URL for Cerebras API. Defaults to "https://api.cerebras.ai/v1" model (str, optional): The model identifier to use. Defaults to "llama-3.3-70b" **kwargs: Additional keyword arguments passed to OpenAILLMService """ def __init__( self, *, api_key: str, base_url: str = "https://api.cerebras.ai/v1", model: str = "llama-3.3-70b", **kwargs, ): super().__init__(api_key=api_key, base_url=base_url, model=model, **kwargs)
[docs] def create_client(self, api_key=None, base_url=None, **kwargs): """Create OpenAI-compatible client for Cerebras API endpoint.""" logger.debug(f"Creating Cerebras client with api {base_url}") return super().create_client(api_key, base_url, **kwargs)
[docs] async def get_chat_completions( self, context: OpenAILLMContext, messages: List[ChatCompletionMessageParam] ) -> AsyncStream[ChatCompletionChunk]: """Create a streaming chat completion using Cerebras's API. Args: context (OpenAILLMContext): The context object containing tools configuration and other settings for the chat completion. messages (List[ChatCompletionMessageParam]): The list of messages comprising the conversation history and current request. Returns: AsyncStream[ChatCompletionChunk]: A streaming response of chat completion chunks that can be processed asynchronously. """ params = { "model": self.model_name, "stream": True, "messages": messages, "tools": context.tools, "tool_choice": context.tool_choice, "seed": self._settings["seed"], "temperature": self._settings["temperature"], "top_p": self._settings["top_p"], "max_completion_tokens": self._settings["max_completion_tokens"], } params.update(self._settings["extra"]) chunks = await self._client.chat.completions.create(**params) return chunks