Source code for pipecat.utils.tracing.service_decorators

#
# Copyright (c) 2024–2025, Daily
#
# SPDX-License-Identifier: BSD 2-Clause License
#

"""Service-specific OpenTelemetry tracing decorators for Pipecat.

This module provides specialized decorators that automatically capture
rich information about service execution including configuration,
parameters, and performance metrics.
"""

import contextlib
import functools
import inspect
import json
import logging
from typing import TYPE_CHECKING, Callable, Optional, TypeVar

# Type imports for type checking only
if TYPE_CHECKING:
    from opentelemetry import context as context_api
    from opentelemetry import trace

from pipecat.utils.tracing.service_attributes import (
    add_gemini_live_span_attributes,
    add_llm_span_attributes,
    add_openai_realtime_span_attributes,
    add_stt_span_attributes,
    add_tts_span_attributes,
)
from pipecat.utils.tracing.setup import is_tracing_available
from pipecat.utils.tracing.turn_context_provider import get_current_turn_context

if is_tracing_available():
    from opentelemetry import context as context_api
    from opentelemetry import trace

T = TypeVar("T")
R = TypeVar("R")


# Internal helper functions
def _noop_decorator(func):
    """No-op fallback decorator when tracing is unavailable."""
    return func


def _get_parent_service_context(self):
    """Get the parent service span context (internal use only).

    This looks for the service span that was created when the service was initialized.

    Args:
        self: The service instance

    Returns:
        Context or None: The parent service context, or None if unavailable
    """
    if not is_tracing_available():
        return None

    # The parent span was created when Traceable was initialized and stored as self._span
    if hasattr(self, "_span") and self._span:
        return trace.set_span_in_context(self._span)

    # If we can't find a stored span, default to current context
    return context_api.get_current()


def _add_token_usage_to_span(span, token_usage):
    """Add token usage metrics to a span (internal use only).

    Args:
        span: The span to add token metrics to
        token_usage: Dictionary or object containing token usage information
    """
    if not is_tracing_available() or not token_usage:
        return

    if isinstance(token_usage, dict):
        if "prompt_tokens" in token_usage:
            span.set_attribute("gen_ai.usage.input_tokens", token_usage["prompt_tokens"])
        if "completion_tokens" in token_usage:
            span.set_attribute("gen_ai.usage.output_tokens", token_usage["completion_tokens"])
    else:
        # Handle LLMTokenUsage object
        span.set_attribute("gen_ai.usage.input_tokens", getattr(token_usage, "prompt_tokens", 0))
        span.set_attribute(
            "gen_ai.usage.output_tokens", getattr(token_usage, "completion_tokens", 0)
        )


[docs] def traced_tts(func: Optional[Callable] = None, *, name: Optional[str] = None) -> Callable: """Traces TTS service methods with TTS-specific attributes. Automatically captures and records: - Service name and model information - Voice ID and settings - Character count and text content - Performance metrics like TTFB Works with both async functions and generators. Args: func: The TTS method to trace. name: Custom span name. Defaults to service type and class name. Returns: Wrapped method with TTS-specific tracing. """ if not is_tracing_available(): return _noop_decorator if func is None else _noop_decorator(func) def decorator(f): is_async_generator = inspect.isasyncgenfunction(f) @contextlib.asynccontextmanager async def tracing_context(self, text): """Async context manager for TTS tracing.""" if not is_tracing_available(): yield None return service_class_name = self.__class__.__name__ span_name = "tts" # Get parent context turn_context = get_current_turn_context() parent_context = turn_context or _get_parent_service_context(self) # Create span tracer = trace.get_tracer("pipecat") with tracer.start_as_current_span(span_name, context=parent_context) as span: try: add_tts_span_attributes( span=span, service_name=service_class_name, model=getattr(self, "model_name", "unknown"), voice_id=getattr(self, "_voice_id", "unknown"), text=text, settings=getattr(self, "_settings", {}), character_count=len(text), operation_name="tts", cartesia_version=getattr(self, "_cartesia_version", None), context_id=getattr(self, "_context_id", None), ) yield span except Exception as e: logging.warning(f"Error in TTS tracing: {e}") raise finally: # Update TTFB metric at the end ttfb: Optional[float] = getattr(getattr(self, "_metrics", None), "ttfb", None) if ttfb is not None: span.set_attribute("metrics.ttfb", ttfb) if is_async_generator: @functools.wraps(f) async def gen_wrapper(self, text, *args, **kwargs): try: if not is_tracing_available(): async for item in f(self, text, *args, **kwargs): yield item return async with tracing_context(self, text): async for item in f(self, text, *args, **kwargs): yield item except Exception as e: logging.error(f"Error in TTS tracing (continuing without tracing): {e}") # If tracing fails, fall back to the original function async for item in f(self, text, *args, **kwargs): yield item return gen_wrapper else: @functools.wraps(f) async def wrapper(self, text, *args, **kwargs): try: if not is_tracing_available(): return await f(self, text, *args, **kwargs) async with tracing_context(self, text): return await f(self, text, *args, **kwargs) except Exception as e: logging.error(f"Error in TTS tracing (continuing without tracing): {e}") # If tracing fails, fall back to the original function return await f(self, text, *args, **kwargs) return wrapper if func is not None: return decorator(func) return decorator
[docs] def traced_stt(func: Optional[Callable] = None, *, name: Optional[str] = None) -> Callable: """Traces STT service methods with transcription attributes. Automatically captures and records: - Service name and model information - Transcription text and final status - Language information - Performance metrics like TTFB Args: func: The STT method to trace. name: Custom span name. Defaults to function name. Returns: Wrapped method with STT-specific tracing. """ if not is_tracing_available(): return _noop_decorator if func is None else _noop_decorator(func) def decorator(f): @functools.wraps(f) async def wrapper(self, transcript, is_final, language=None): try: if not is_tracing_available(): return await f(self, transcript, is_final, language) service_class_name = self.__class__.__name__ span_name = "stt" # Get the turn context first, then fall back to service context turn_context = get_current_turn_context() parent_context = turn_context or _get_parent_service_context(self) # Create a new span as child of the turn span or service span tracer = trace.get_tracer("pipecat") with tracer.start_as_current_span( span_name, context=parent_context ) as current_span: try: # Get TTFB metric if available ttfb: Optional[float] = getattr( getattr(self, "_metrics", None), "ttfb", None ) # Use settings from the service if available settings = getattr(self, "_settings", {}) add_stt_span_attributes( span=current_span, service_name=service_class_name, model=getattr(self, "model_name", settings.get("model", "unknown")), transcript=transcript, is_final=is_final, language=str(language) if language else None, vad_enabled=getattr(self, "vad_enabled", False), settings=settings, ttfb=ttfb, ) # Call the original function return await f(self, transcript, is_final, language) except Exception as e: # Log any exception but don't disrupt the main flow logging.warning(f"Error in STT transcription tracing: {e}") raise except Exception as e: logging.error(f"Error in STT tracing (continuing without tracing): {e}") # If tracing fails, fall back to the original function return await f(self, transcript, is_final, language) return wrapper if func is not None: return decorator(func) return decorator
[docs] def traced_llm(func: Optional[Callable] = None, *, name: Optional[str] = None) -> Callable: """Traces LLM service methods with LLM-specific attributes. Automatically captures and records: - Service name and model information - Context content and messages - Tool configurations - Token usage metrics - Performance metrics like TTFB - Aggregated output text Args: func: The LLM method to trace. name: Custom span name. Defaults to service type and class name. Returns: Wrapped method with LLM-specific tracing. """ if not is_tracing_available(): return _noop_decorator if func is None else _noop_decorator(func) def decorator(f): @functools.wraps(f) async def wrapper(self, context, *args, **kwargs): try: if not is_tracing_available(): return await f(self, context, *args, **kwargs) service_class_name = self.__class__.__name__ span_name = "llm" # Get the parent context - turn context if available, otherwise service context turn_context = get_current_turn_context() parent_context = turn_context or _get_parent_service_context(self) # Create a new span as child of the turn span or service span tracer = trace.get_tracer("pipecat") with tracer.start_as_current_span( span_name, context=parent_context ) as current_span: try: # Store original method and output aggregator original_push_frame = self.push_frame output_text = "" # Simple string accumulation async def traced_push_frame(frame, direction=None): nonlocal output_text # Capture text from LLMTextFrame during streaming if ( hasattr(frame, "__class__") and frame.__class__.__name__ == "LLMTextFrame" and hasattr(frame, "text") ): output_text += frame.text # Call original if direction is not None: return await original_push_frame(frame, direction) else: return await original_push_frame(frame) # For token usage monitoring original_start_llm_usage_metrics = None if hasattr(self, "start_llm_usage_metrics"): original_start_llm_usage_metrics = self.start_llm_usage_metrics # Override the method to capture token usage @functools.wraps(original_start_llm_usage_metrics) async def wrapped_start_llm_usage_metrics(tokens): # Call the original method await original_start_llm_usage_metrics(tokens) # Add token usage to the current span _add_token_usage_to_span(current_span, tokens) # Replace the method temporarily self.start_llm_usage_metrics = wrapped_start_llm_usage_metrics try: # Replace push_frame to capture output self.push_frame = traced_push_frame # Detect if we're using Google's service is_google_service = "google" in service_class_name.lower() # Try to get messages based on service type messages = None serialized_messages = None # TODO: Revisit once we unify the messages across services if is_google_service: # Handle Google service specifically if hasattr(context, "get_messages_for_logging"): messages = context.get_messages_for_logging() else: # Handle other services like OpenAI if hasattr(context, "get_messages"): messages = context.get_messages() elif hasattr(context, "messages"): messages = context.messages # Serialize messages if available if messages: try: serialized_messages = json.dumps(messages) except Exception as e: serialized_messages = f"Error serializing messages: {str(e)}" # Get tools, system message, etc. based on the service type tools = getattr(context, "tools", None) serialized_tools = None tool_count = 0 if tools: try: serialized_tools = json.dumps(tools) tool_count = len(tools) if isinstance(tools, list) else 1 except Exception as e: serialized_tools = f"Error serializing tools: {str(e)}" # Handle system message for different services system_message = None if hasattr(context, "system"): system_message = context.system elif hasattr(context, "system_message"): system_message = context.system_message elif hasattr(self, "_system_instruction"): system_message = self._system_instruction # Get settings from the service params = {} if hasattr(self, "_settings"): for key, value in self._settings.items(): if key == "extra": continue # Add value directly if it's a basic type if isinstance(value, (int, float, bool, str)): params[key] = value elif value is None or ( hasattr(value, "__name__") and value.__name__ == "NOT_GIVEN" ): params[key] = "NOT_GIVEN" # Add all available attributes to the span attribute_kwargs = { "service_name": service_class_name, "model": getattr(self, "model_name", "unknown"), "stream": True, # Most LLM services use streaming "parameters": params, } # Add optional attributes only if they exist if serialized_messages: attribute_kwargs["messages"] = serialized_messages if serialized_tools: attribute_kwargs["tools"] = serialized_tools attribute_kwargs["tool_count"] = tool_count if system_message: attribute_kwargs["system"] = system_message # Add all gathered attributes to the span add_llm_span_attributes(span=current_span, **attribute_kwargs) except Exception as e: logging.warning(f"Error setting up LLM tracing: {e}") # Don't raise - let the function execute anyway # Run function with modified push_frame to capture the output result = await f(self, context, *args, **kwargs) # Add aggregated output after function completes, if available if output_text: current_span.set_attribute("output", output_text) return result finally: # Always restore the original methods self.push_frame = original_push_frame if ( "original_start_llm_usage_metrics" in locals() and original_start_llm_usage_metrics ): self.start_llm_usage_metrics = original_start_llm_usage_metrics # Update TTFB metric ttfb: Optional[float] = getattr( getattr(self, "_metrics", None), "ttfb", None ) if ttfb is not None: current_span.set_attribute("metrics.ttfb", ttfb) except Exception as e: logging.error(f"Error in LLM tracing (continuing without tracing): {e}") # If tracing fails, fall back to the original function return await f(self, context, *args, **kwargs) return wrapper if func is not None: return decorator(func) return decorator
[docs] def traced_gemini_live(operation: str) -> Callable: """Traces Gemini Live service methods with operation-specific attributes. This decorator automatically captures relevant information based on the operation type: - llm_setup: Configuration, tools definitions, and system instructions - llm_tool_call: Function call information - llm_tool_result: Function execution results - llm_response: Complete LLM response with usage and output Args: operation: The operation name (matches the event type being handled) Returns: Wrapped method with Gemini Live specific tracing. """ if not is_tracing_available(): return _noop_decorator def decorator(func): @functools.wraps(func) async def wrapper(self, *args, **kwargs): try: if not is_tracing_available(): return await func(self, *args, **kwargs) service_class_name = self.__class__.__name__ span_name = f"{operation}" # Get the parent context - turn context if available, otherwise service context turn_context = get_current_turn_context() parent_context = turn_context or _get_parent_service_context(self) # Create a new span as child of the turn span or service span tracer = trace.get_tracer("pipecat") with tracer.start_as_current_span( span_name, context=parent_context ) as current_span: try: # Base service attributes model_name = getattr( self, "model_name", getattr(self, "_model_name", "unknown") ) voice_id = getattr(self, "_voice_id", None) language_code = getattr(self, "_language_code", None) settings = getattr(self, "_settings", {}) # Get modalities if available modalities = None if hasattr(self, "_settings") and "modalities" in self._settings: modality_obj = self._settings["modalities"] if hasattr(modality_obj, "value"): modalities = modality_obj.value else: modalities = str(modality_obj) # Operation-specific attribute collection operation_attrs = {} if operation == "llm_setup": # Capture detailed tool information tools = getattr(self, "_tools", None) if tools: # Handle different tool formats tools_list = [] tools_serialized = None try: if hasattr(tools, "standard_tools"): # ToolsSchema object tools_list = tools.standard_tools # Serialize the tools for detailed inspection tools_serialized = json.dumps( [ { "name": tool.name if hasattr(tool, "name") else tool.get("name", "unknown"), "description": tool.description if hasattr(tool, "description") else tool.get("description", ""), "properties": tool.properties if hasattr(tool, "properties") else tool.get("properties", {}), "required": tool.required if hasattr(tool, "required") else tool.get("required", []), } for tool in tools_list ] ) elif isinstance(tools, list): # List of tool dictionaries or objects tools_list = tools tools_serialized = json.dumps( [ { "name": tool.get("name", "unknown") if isinstance(tool, dict) else getattr(tool, "name", "unknown"), "description": tool.get("description", "") if isinstance(tool, dict) else getattr(tool, "description", ""), "properties": tool.get("properties", {}) if isinstance(tool, dict) else getattr(tool, "properties", {}), "required": tool.get("required", []) if isinstance(tool, dict) else getattr(tool, "required", []), } for tool in tools_list ] ) if tools_list: operation_attrs["tools"] = tools_list operation_attrs["tools_serialized"] = tools_serialized except Exception as e: logging.warning(f"Error serializing tools for tracing: {e}") # Fallback to basic tool count if tools_list: operation_attrs["tools"] = tools_list # Capture system instruction information system_instruction = getattr(self, "_system_instruction", None) if system_instruction: operation_attrs["system_instruction"] = system_instruction[ :500 ] # Truncate if very long # Capture context system instructions if available if hasattr(self, "_context") and self._context: try: context_system = self._context.extract_system_instructions() if context_system: operation_attrs["context_system_instruction"] = ( context_system[:500] ) # Truncate if very long except Exception as e: logging.warning( f"Error extracting context system instructions: {e}" ) elif operation == "llm_tool_call" and args: # Extract tool call information evt = args[0] if args else None if evt and hasattr(evt, "toolCall") and evt.toolCall.functionCalls: function_calls = evt.toolCall.functionCalls if function_calls: # Add information about the first function call call = function_calls[0] operation_attrs["tool.function_name"] = call.name operation_attrs["tool.call_id"] = call.id operation_attrs["tool.calls_count"] = len(function_calls) # Add all function names being called all_function_names = [c.name for c in function_calls] operation_attrs["tool.all_function_names"] = ",".join( all_function_names ) # Add arguments for the first call (truncated if too long) try: args_str = json.dumps(call.args) if call.args else "{}" if len(args_str) > 1000: args_str = args_str[:1000] + "..." operation_attrs["tool.arguments"] = args_str except Exception: operation_attrs["tool.arguments"] = str(call.args)[:1000] elif operation == "llm_tool_result" and args: # Extract tool result information tool_result_message = args[0] if args else None if tool_result_message and isinstance(tool_result_message, dict): # Extract the tool call information tool_call_id = tool_result_message.get("tool_call_id") tool_call_name = tool_result_message.get("tool_call_name") result_content = tool_result_message.get("content") if tool_call_id: operation_attrs["tool.call_id"] = tool_call_id if tool_call_name: operation_attrs["tool.function_name"] = tool_call_name # Parse and capture the result if result_content: try: result = json.loads(result_content) # Serialize the result, truncating if too long result_str = json.dumps(result) if len(result_str) > 2000: # Larger limit for results result_str = result_str[:2000] + "..." operation_attrs["tool.result"] = result_str # Add result status/success indicator if present if isinstance(result, dict): if "error" in result: operation_attrs["tool.result_status"] = "error" elif "success" in result: operation_attrs["tool.result_status"] = "success" else: operation_attrs["tool.result_status"] = "completed" except json.JSONDecodeError as e: operation_attrs["tool.result"] = ( f"Invalid JSON: {str(result_content)[:500]}" ) operation_attrs["tool.result_status"] = "parse_error" except Exception as e: operation_attrs["tool.result"] = ( f"Error processing result: {str(e)}" ) operation_attrs["tool.result_status"] = "processing_error" elif operation == "llm_response" and args: # Extract usage and response metadata from turn complete event evt = args[0] if args else None if evt and hasattr(evt, "usageMetadata") and evt.usageMetadata: usage = evt.usageMetadata # Token usage - basic attributes for span visibility if hasattr(usage, "promptTokenCount"): operation_attrs["tokens.prompt"] = usage.promptTokenCount or 0 if hasattr(usage, "responseTokenCount"): operation_attrs["tokens.completion"] = ( usage.responseTokenCount or 0 ) if hasattr(usage, "totalTokenCount"): operation_attrs["tokens.total"] = usage.totalTokenCount or 0 # Get output text and modality from service state text = getattr(self, "_bot_text_buffer", "") audio_text = getattr(self, "_llm_output_buffer", "") if text: # TEXT modality operation_attrs["output"] = text operation_attrs["output_modality"] = "TEXT" elif audio_text: # AUDIO modality operation_attrs["output"] = audio_text operation_attrs["output_modality"] = "AUDIO" # Add turn completion status if ( evt and hasattr(evt, "serverContent") and evt.serverContent.turnComplete ): operation_attrs["turn_complete"] = True # Add all attributes to the span add_gemini_live_span_attributes( span=current_span, service_name=service_class_name, model=model_name, operation_name=operation, voice_id=voice_id, language=language_code, modalities=modalities, settings=settings, **operation_attrs, ) # For llm_response operation, also handle token usage metrics if operation == "llm_response" and hasattr(self, "start_llm_usage_metrics"): evt = args[0] if args else None if evt and hasattr(evt, "usageMetadata") and evt.usageMetadata: usage = evt.usageMetadata # Create LLMTokenUsage object from pipecat.metrics.metrics import LLMTokenUsage tokens = LLMTokenUsage( prompt_tokens=usage.promptTokenCount or 0, completion_tokens=usage.responseTokenCount or 0, total_tokens=usage.totalTokenCount or 0, ) _add_token_usage_to_span(current_span, tokens) # Capture TTFB metric if available ttfb = getattr(getattr(self, "_metrics", None), "ttfb", None) if ttfb is not None: current_span.set_attribute("metrics.ttfb", ttfb) # Run the original function result = await func(self, *args, **kwargs) return result except Exception as e: current_span.record_exception(e) current_span.set_status(trace.Status(trace.StatusCode.ERROR, str(e))) raise except Exception as e: logging.error(f"Error in Gemini Live tracing (continuing without tracing): {e}") # If tracing fails, fall back to the original function return await func(self, *args, **kwargs) return wrapper return decorator
[docs] def traced_openai_realtime(operation: str) -> Callable: """Traces OpenAI Realtime service methods with operation-specific attributes. This decorator automatically captures relevant information based on the operation type: - llm_setup: Session configuration and tools - llm_request: Context and input messages - llm_response: Usage metadata, output, and function calls Args: operation: The operation name (matches the event type being handled) Returns: Wrapped method with OpenAI Realtime specific tracing. """ if not is_tracing_available(): return _noop_decorator def decorator(func): @functools.wraps(func) async def wrapper(self, *args, **kwargs): try: if not is_tracing_available(): return await func(self, *args, **kwargs) service_class_name = self.__class__.__name__ span_name = f"{operation}" # Get the parent context - turn context if available, otherwise service context turn_context = get_current_turn_context() parent_context = turn_context or _get_parent_service_context(self) # Create a new span as child of the turn span or service span tracer = trace.get_tracer("pipecat") with tracer.start_as_current_span( span_name, context=parent_context ) as current_span: try: # Base service attributes model_name = getattr( self, "model_name", getattr(self, "_model_name", "unknown") ) # Operation-specific attribute collection operation_attrs = {} if operation == "llm_setup": # Capture session properties and tools session_properties = getattr(self, "_session_properties", None) if session_properties: try: # Convert to dict for easier processing if hasattr(session_properties, "model_dump"): props_dict = session_properties.model_dump() elif hasattr(session_properties, "__dict__"): props_dict = session_properties.__dict__ else: props_dict = {} operation_attrs["session_properties"] = props_dict # Extract tools if available tools = props_dict.get("tools") if tools: operation_attrs["tools"] = tools try: operation_attrs["tools_serialized"] = json.dumps(tools) except Exception as e: logging.warning(f"Error serializing OpenAI tools: {e}") # Extract instructions instructions = props_dict.get("instructions") if instructions: operation_attrs["instructions"] = instructions[:500] except Exception as e: logging.warning(f"Error processing session properties: {e}") # Also check context for tools if hasattr(self, "_context") and self._context: try: context_tools = getattr(self._context, "tools", None) if context_tools and not operation_attrs.get("tools"): operation_attrs["tools"] = context_tools operation_attrs["tools_serialized"] = json.dumps( context_tools ) except Exception as e: logging.warning(f"Error extracting context tools: {e}") elif operation == "llm_request": # Capture context messages being sent if hasattr(self, "_context") and self._context: try: messages = self._context.get_messages_for_logging() if messages: operation_attrs["context_messages"] = json.dumps(messages) except Exception as e: logging.warning(f"Error getting context messages: {e}") elif operation == "llm_response" and args: # Extract usage and response metadata evt = args[0] if args else None if evt and hasattr(evt, "response"): response = evt.response # Token usage - basic attributes for span visibility if hasattr(response, "usage"): usage = response.usage if hasattr(usage, "input_tokens"): operation_attrs["tokens.prompt"] = usage.input_tokens if hasattr(usage, "output_tokens"): operation_attrs["tokens.completion"] = usage.output_tokens if hasattr(usage, "total_tokens"): operation_attrs["tokens.total"] = usage.total_tokens # Response status and metadata if hasattr(response, "status"): operation_attrs["response.status"] = response.status if hasattr(response, "id"): operation_attrs["response.id"] = response.id # Output items and extract transcript for output field if hasattr(response, "output") and response.output: operation_attrs["response.output_items"] = len(response.output) # Extract assistant transcript and function calls assistant_transcript = "" function_calls = [] for item in response.output: if ( hasattr(item, "content") and item.content and hasattr(item, "role") and item.role == "assistant" ): for content in item.content: if ( hasattr(content, "transcript") and content.transcript ): assistant_transcript += content.transcript + " " elif hasattr(item, "type") and item.type == "function_call": function_call_info = { "name": getattr(item, "name", "unknown"), "call_id": getattr(item, "call_id", "unknown"), } if hasattr(item, "arguments"): args_str = item.arguments if len(args_str) > 500: args_str = args_str[:500] + "..." function_call_info["arguments"] = args_str function_calls.append(function_call_info) if assistant_transcript.strip(): operation_attrs["output"] = assistant_transcript.strip() if function_calls: operation_attrs["function_calls"] = function_calls operation_attrs["function_calls.count"] = len( function_calls ) all_names = [call["name"] for call in function_calls] operation_attrs["function_calls.all_names"] = ",".join( all_names ) # Add all attributes to the span add_openai_realtime_span_attributes( span=current_span, service_name=service_class_name, model=model_name, operation_name=operation, **operation_attrs, ) # For llm_response operation, also handle token usage metrics if operation == "llm_response" and hasattr(self, "start_llm_usage_metrics"): evt = args[0] if args else None if evt and hasattr(evt, "response") and hasattr(evt.response, "usage"): usage = evt.response.usage # Create LLMTokenUsage object from pipecat.metrics.metrics import LLMTokenUsage tokens = LLMTokenUsage( prompt_tokens=getattr(usage, "input_tokens", 0), completion_tokens=getattr(usage, "output_tokens", 0), total_tokens=getattr(usage, "total_tokens", 0), ) _add_token_usage_to_span(current_span, tokens) # Capture TTFB metric if available ttfb = getattr(getattr(self, "_metrics", None), "ttfb", None) if ttfb is not None: current_span.set_attribute("metrics.ttfb", ttfb) # Run the original function result = await func(self, *args, **kwargs) return result except Exception as e: current_span.record_exception(e) current_span.set_status(trace.Status(trace.StatusCode.ERROR, str(e))) raise except Exception as e: logging.error(f"Error in OpenAI Realtime tracing (continuing without tracing): {e}") # If tracing fails, fall back to the original function return await func(self, *args, **kwargs) return wrapper return decorator