Metrics
- class pipecat.metrics.metrics.MetricsData(*, processor, model=None)[source]
Bases:
BaseModel
- Parameters:
processor (str)
model (str | None)
- processor: str
- model: str | None
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pipecat.metrics.metrics.TTFBMetricsData(*, processor, model=None, value)[source]
Bases:
MetricsData
- Parameters:
processor (str)
model (str | None)
value (float)
- value: float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pipecat.metrics.metrics.ProcessingMetricsData(*, processor, model=None, value)[source]
Bases:
MetricsData
- Parameters:
processor (str)
model (str | None)
value (float)
- value: float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pipecat.metrics.metrics.LLMTokenUsage(*, prompt_tokens, completion_tokens, total_tokens, cache_read_input_tokens=None, cache_creation_input_tokens=None)[source]
Bases:
BaseModel
- Parameters:
prompt_tokens (int)
completion_tokens (int)
total_tokens (int)
cache_read_input_tokens (int | None)
cache_creation_input_tokens (int | None)
- prompt_tokens: int
- completion_tokens: int
- total_tokens: int
- cache_read_input_tokens: int | None
- cache_creation_input_tokens: int | None
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pipecat.metrics.metrics.LLMUsageMetricsData(*, processor, model=None, value)[source]
Bases:
MetricsData
- Parameters:
processor (str)
model (str | None)
value (LLMTokenUsage)
- value: LLMTokenUsage
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pipecat.metrics.metrics.TTSUsageMetricsData(*, processor, model=None, value)[source]
Bases:
MetricsData
- Parameters:
processor (str)
model (str | None)
value (int)
- value: int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- class pipecat.metrics.metrics.SmartTurnMetricsData(*, processor, model=None, is_complete, probability, inference_time_ms, server_total_time_ms, e2e_processing_time_ms)[source]
Bases:
MetricsData
Metrics data for smart turn predictions.
- Parameters:
processor (str)
model (str | None)
is_complete (bool)
probability (float)
inference_time_ms (float)
server_total_time_ms (float)
e2e_processing_time_ms (float)
- is_complete: bool
- probability: float
- inference_time_ms: float
- server_total_time_ms: float
- e2e_processing_time_ms: float
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].