LlmVertex
- class pipecat.services.google.llm_vertex.GoogleVertexLLMService(*, credentials=None, credentials_path=None, model='google/gemini-2.0-flash-001', params=None, **kwargs)[source]
Bases:
OpenAILLMService
Implements inference with Google’s AI models via Vertex AI while maintaining OpenAI API compatibility.
Reference: https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/call-vertex-using-openai-library
- Parameters:
credentials (str | None)
credentials_path (str | None)
model (str)
params (InputParams | None)
- class InputParams(*, frequency_penalty=<factory>, presence_penalty=<factory>, seed=<factory>, temperature=<factory>, top_k=None, top_p=<factory>, max_tokens=<factory>, max_completion_tokens=<factory>, extra=<factory>, location='us-east4', project_id)[source]
Bases:
InputParams
Input parameters specific to Vertex AI.
- Parameters:
frequency_penalty (float | None)
presence_penalty (float | None)
seed (int | None)
temperature (float | None)
top_k (int | None)
top_p (float | None)
max_tokens (int | None)
max_completion_tokens (int | None)
extra (Dict[str, Any] | None)
location (str)
project_id (str)
- location: str
- project_id: str
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].