Memory
- class pipecat.services.mem0.memory.Mem0MemoryService(*, api_key=None, local_config=None, user_id=None, agent_id=None, run_id=None, params=None)[source]
Bases:
FrameProcessor
A standalone memory service that integrates with Mem0.
This service intercepts message frames in the pipeline, stores them in Mem0, and enhances context with relevant memories before passing them downstream.
- Parameters:
api_key (str) – The API key for accessing Mem0’s API
user_id (str) – The user ID to associate with memories in Mem0
params (InputParams, optional) – Configuration parameters for memory retrieval
local_config (Dict[str, Any] | None)
agent_id (str | None)
run_id (str | None)
- class InputParams(*, search_limit=10, search_threshold=0.1, api_version='v2', system_prompt='Based on previous conversations, I recall: \n\n', add_as_system_message=True, position=1)[source]
Bases:
BaseModel
- Parameters:
search_limit (int)
search_threshold (float)
api_version (str)
system_prompt (str)
add_as_system_message (bool)
position (int)
- search_limit: int
- search_threshold: float
- api_version: str
- system_prompt: str
- add_as_system_message: bool
- position: int
- model_config: ClassVar[ConfigDict] = {}
Configuration for the model, should be a dictionary conforming to [ConfigDict][pydantic.config.ConfigDict].
- async process_frame(frame, direction)[source]
Process incoming frames, intercept context frames for memory integration.
- Parameters:
frame (Frame) – The incoming frame to process
direction (FrameDirection) – The direction of frame flow in the pipeline