Context
- class pipecat.services.openai_realtime_beta.context.OpenAIRealtimeLLMContext(messages=None, tools=None, **kwargs)[source]
Bases:
OpenAILLMContext
- static upgrade_to_realtime(obj)[source]
- Parameters:
obj (OpenAILLMContext)
- Return type:
OpenAIRealtimeLLMContext
- from_standard_message(message)[source]
Convert from OpenAI message format to OpenAI message format (passthrough).
OpenAI’s format allows both simple string content and structured content: - Simple: {“role”: “user”, “content”: “Hello”} - Structured: {“role”: “user”, “content”: [{“type”: “text”, “text”: “Hello”}]}
Since OpenAI is our standard format, this is a passthrough function.
- Parameters:
message (dict) – Message in OpenAI format
- Returns:
Same message, unchanged
- Return type:
dict
- get_messages_for_initializing_history()[source]
- add_user_content_item_as_message(item)[source]
- class pipecat.services.openai_realtime_beta.context.OpenAIRealtimeUserContextAggregator(context, *, params=None, **kwargs)[source]
Bases:
OpenAIUserContextAggregator
- Parameters:
context (OpenAILLMContext)
params (LLMUserAggregatorParams | None)
- async process_frame(frame, direction=FrameDirection.DOWNSTREAM)[source]
- Parameters:
frame (Frame)
direction (FrameDirection)
- async push_aggregation()[source]
Pushes the current aggregation based on interruption strategies and conditions.
- class pipecat.services.openai_realtime_beta.context.OpenAIRealtimeAssistantContextAggregator(context, *, params=None, **kwargs)[source]
Bases:
OpenAIAssistantContextAggregator
- Parameters:
context (OpenAILLMContext)
params (LLMAssistantAggregatorParams | None)
- async process_frame(frame, direction)[source]
- Parameters:
frame (Frame)
direction (FrameDirection)
- async handle_function_call_result(frame)[source]
Handle the result of a function call.
Updates the context with the function call result, replacing any previous IN_PROGRESS status.
- Parameters:
frame (FunctionCallResultFrame) – Frame containing the function call result.